New α-trifluoromethyl-substituted α-amino phosphonates

Sergey N. Osipov,* Oleg I. Artyushin and Alexey F. Kolomiets

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 117813 Moscow, Russian Federation. Fax: +7 095 135 5085; e-mail: osipov@ineos.ac.ru

10.1070/MC2000v010n05ABEH001339

The title α -amino phosphonates with orthogonal protective groups (Cbz/OMe, OEt) were obtained on addition of C-nucleophiles to highly electrophilic imines PG-N=C(CF₃)P(O)(OR)₂.

Table 1 Characteristics of compounds 2a-2g.

Compound	R	\mathbb{R}^1	mp/°C	Yield (%)
2a	Me	Me	a	69
2b	Me	Bu^i	64-65	70
2c	Me	CH ₂ Ph	83-84	73
2d	Me	CH ₂ CH=CH ₂	a	71
2e	Et	CH ₂ CH=CH ₂	a	68
2f	Me	CH ₂ CH ₂ CH=CH ₂	124-125	66
2g	Et	CH ₂ CH ₂ CH=CH ₂	57-58	74

aOil.

 α -Amino phosphonates are important analogues of α -amino carboxylic acids, and their synthesis and biological activity have been a focus of attention in synthetic and medicinal chemistry. These compounds can be potent antibacterial agents and transition-state analogue inhibitors of proteolytic enzymes.

In the last decades, β -fluorinated α -amino acids have attracted a considerable interest as highly selective inhibitors of pyridoxal phosphate-dependent enzymes,⁴ as well as candidates for the modification of biologically active peptides.⁵ Recently,⁶ we reported on a new effective pathway to α -halodifluoromethyl-substituted α -amino acids based on the amidoalkylation of carbon nucleophiles with highly electrophilic imines of methyl 3-halo-3,3-difluoropyruvates (Scheme 1).

$$XF_2C-C-CO_2Me$$

$$XF_2C-C-CO_2Me$$

$$X=F, CI, Br, H$$

$$X=F, CI, Br, H$$

Scheme 1

We disclose an effective access to the phosphorous analogues of α -trifluoromethyl-substituted α -amino acids. We used new highly electrophilic α -CF₃ imino phosphonates⁷ **1** with orthogonal protective groups (Cbz/OMe, OEt) as fluorine-containing

building blocks. Despite the fact that some of these acyl imines were described, 8 they were not used for the preparation of α -amino phosphonates. Thus, we found that 1 smoothly reacted with organometallic reagents at $-78~^{\circ}\text{C}$ in THF or diethyl ether. The nucleophilic addition proceeds regiospecifically and results in alkylation of the C=N double bond to give corresponding α -amino phosphonates 2 in preparative yields (Scheme 2, Table 1).†

In summary, we obtained new orthogonally protected $\alpha\text{-CF}_3$ $\alpha\text{-amino}$ phosphonates. Incorporation of these compounds into biologically active peptides is under current investigation.

This work was supported by INTAS (grant no. 97-1874). We are grateful to P. V. Petrovsky for performing NMR experiments.

References

- (a) F. Heaney, in Comprehensive Organic Functional Group Transformations, eds. A. R. Katritzky, O. Meth-Cohn and C. W. Rees, Elsevier Science, Oxford, 1995, vol. 4, ch. 4, p. 10; (b) S. C. Field, Tetrahedron, 1999, 55, 12237.
- 2 F. R. Atherton, C. H. Hassall and R. W. Lambert, *J. Med. Chem.*, 1986, **29**, 29 and references therein.
- 3 (a) P. Kafarski and B. Lejcazk, *Phosphorus Sulfur Silicon Relat. Elem.* 1991, **63**, 193; (b) J. Bird, R. C. De Mello, H. P. Harper, D. J. Hunter, E. H. Karran, E. R. Markwell, A. J. Miles-Williams, S. S. Rahman and R. W. Ward, *J. Med. Chem.*, 1994, **37**, 158; (c) D. A. McLeod, R. I. Brinkworth, J. A. Ashley, K. D. Janda and P. Wirsching, *Bioorg. Med. Chem. Lett.*, 1991, **1**, 653.
- 4 (a) J. Kolonitsh, L. M. Perkins, A. A. Patchett, G. A. Doldouras, S. Marburg,
 D. E. Duggan, A. L. Maycock and S. D. Aster, *Nature*, 1978, 274, 906;
 (b) P. Bey, *Ann. Chim. (Paris)*, 1984, 9, 695.
- 5 K. Burger, K. Muetze, W. Hollweck and B. Koksch, *Tetrahedron*, 1988, 54, 5915.
- 6 (a) S. N. Osipov, A. S. Golubev, N. Sewald, T. Michel, A. F. Kolomiets, A. V. Fokin and K. Burger, J. Org. Chem., 1996, 61, 7521; (b) S. N. Osipov, A. G. Golubev, N. Sewald and K. Burger, Tetrahedron Lett., 1997, 5965; (c) S. N. Osipov, A. F. Kolomiets and A. V. Fokin, Usp. Khim., 1992, 61, 1457 (Russ. Chem. Rev., 1992, 61, 798).
- 7 S. N. Osipov, O. I. Artyushin, A. F. Kolomiets, C. Bruneau and P. H. Dixneuf, *Synlett*, 2000, in press.
- (a) A. D. Sinitsa, T. V. Kolodka and A. K. Shurubura, Zh. Obshch. Khim.,
 1987, 57, 475 [J. Gen. Chem. USSR (Engl. Transl.), 1987, 57, 415]; (b)
 P. P. Onis'ko, Zh. Obshch. Khim., 1999, 69, 153 (Russ. J. Gen. Chem.,
 1999, 69, 153).

Received: 9th June 2000; Com. 00/1665

 † General procedure for the synthesis of α-amino phosphonates: A Grignard reagent (solution in diethyl ether, 5.9 mmol) was added dropwise to a solution of 6 mmol of imine 1 in dry THF (25 ml) at –78 °C with stirring. After standing for 1 h at –78 °C, the reaction mixture was allowed to warm up to room temperature and stirred for 6 h. The reaction was quenched with a saturated NH₄Cl solution and extracted with diethyl ether (2×20 ml). The combined organic layer was washed with brine (25 ml), dried over MgSO₄ and filtered. The solvent was removed under a reduced pressure, and the crude product was purified by flash chromatography (ethyl acetate–light petroleum).

For **2a**: ^{1}H NMR (CDCl₃) δ : 7.33 (m, 5H, Ph), 5.43 (br. s, 1H, NH), 5.07 (s, 2H, OCH₂), 3.83 (d, 3H, OMe, $^{3}J_{\text{P-H}}$ 10.5 Hz), 3.81 (d, 3H, OMe, $^{3}J_{\text{P-H}}$ 10.5 Hz), 1.93 (d, 3H, Me, $^{3}J_{\text{P-H}}$ 16.0 Hz). ^{19}F NMR (CDCl₃) δ : -65.2 (d, 3F, CF₃, $^{3}J_{\text{P-F}}$ 5.0 Hz). ^{31}P NMR{ $^{1}\text{H}}$ (CDCl₃) δ : 20.4 (q, $^{3}J_{\text{P-F}}$ 5.0 Hz).

For **2b**: ¹H NMR (CDCl₃) δ : 7.35 (m, 5H, Ph), 5.33 (br. s, 1H, NH), 5.08 (m, 2H, OCH₂), 3.83 (d, 3H, OMe, ³ J_{P-H} 10.8 Hz), 3.81 (d, 3H, OMe, ³ J_{P-H} 10.8 Hz), 2.11 (m, 2H, CH₂), 2.05 (m, 1H, CH), 0.95 (m, 6H, 2Me). ¹⁹F NMR (CDCl₃) δ : -60.5 (s, 3F, CF₃). ³¹P NMR{¹H} (CDCl₃) δ : 20.2 (s).